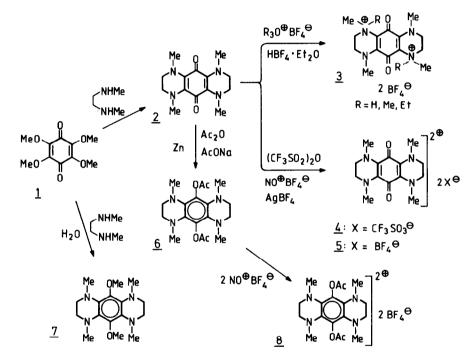
Tetrahedron Letters, Vol.27, No.6, pp 691-694, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

STABLE DICATIONS OF TETRAAMINO-p-BENZOQUINONES

Rudolf Gompper*, Rudolf Binder and Hans-Ulrich Wagner

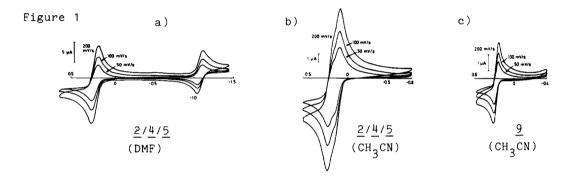
Institut für Organische Chemie der Universität München Karlstraße 23, D-8000 München 2, West Germany


Abstract: N-Peralkyl-tetraamino-p-benzoquinones react with oxidants to form crystalline dication salts. Reductive acylation gives rise to 1,4-bisacyloxy-2,3,5,6-tetraaminobenzenes which can be oxidized to benzene dication salts.

The benzene dication is an antiaromatic 4π electron system. Its hexachloro derivative,¹ possessing a triplet ground state, has been detected in solution. Amino groups exert, as expected, a stabilizing effect on this system. For example, quinone diminium salts are crystalline compounds² with singlet ground states. Recently, a derivative of hexaaminobenzene ("wheel") was synthesized and subsequently oxidized to a dication which had a triplet-ground state in solution.³

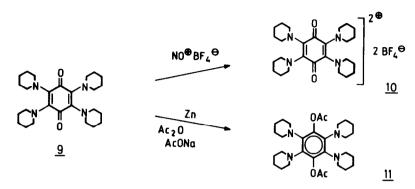
Benzoquinones can be viewed, in a sense, as derivatives of benzene dications. Since amino groups compensate for the electron-withdrawing effect of the carbonyl groups, tetraaminobenzoquinones are therefore expected to be electron-rich rather than electron-poor compounds. Thus, dialkylaminonaphthoquinones can be O-alkylated.⁴ MNDO calculations show that the triplet state of the tetraamino-p-benzoquinone dication has approximately the same energy as the singlet state and that the difference between the heats of formation of tetraamino-p-benzoquinone and its dication is not fundamentally different from that of hexaaminobenzene and its dication:

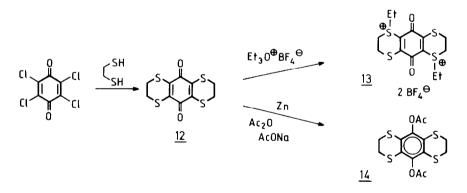
MN		$H_2N \xrightarrow{V} NH_2$ $H_2N \xrightarrow{V} NH_2$ $H_2N \xrightarrow{V} NH_2$	$H_2N \xrightarrow{H_2} NH_2 \\ H_2N \xrightarrow{H_2} NH_2 \\ NH_2$
HOMO/NHOMO (eV)	-9.09/-9.23	-7.83/-8.08	-6.79
H _f (singlet)	-30.8 kcal/Mol	-6.1	90.2
H _f ^o (singlet) H _f ²⁺ (singlet, CI)	451.3 kcal/Mol	410.4	494.5
(triplet)	450.8 kcal/mol	410.2	483.5
$\Delta H_{f}(triplet/singlet)$	-0.5 kcal/Mol	-0.2	-11.0
ΔH _r (triplet ²⁺ /	481.6 kcal/Mol	416.3	393.3
singlet ⁰)			


Since the donor effect of the amino substituent is reduced when tetrakisdialkylamino-p-benzoquinones are not planar (steric),⁵ we set out to synthesize planar tetraamino-p-benzoquinones. When tetramethoxy-p-benzoquinone (<u>1</u>) is warmed with N,N'-dimethylethylenediamine without solvent, the dark blue tetraamino-p-benzoquinone derivative <u>2</u> is obtained in moderate yield (mp (cyclohexane) 190-192°C; UV/VIS (CH_2Cl_2): λ_{max} (lg ϵ) = 627 (2.28), 394 (4.05), 235 (sh, 4.02), 232 nm (4.10)). The low carbonyl stretching frequency (1618 cm⁻¹) indicates a high nucleophilicity of the carbonyl oxygen characteristic of β -aminovinylketones. However, alkylation and protonation of 2

occur only at nitrogen and the salts <u>3</u> (<u>3a</u>: mp 205-207°C; <u>3b</u>: mp 278-279°C, UV/VIS (CH₃CN): $\lambda_{max} = 467$, 354, 227 nm) are formed. The reaction of <u>2</u> with triflic anhydride affords, instead of an acylation product, the bronze dication salt <u>4</u> (mp 194-196°C; UV/VIS (acetonitrile): λ_{max} (lg ε) = 589 (4.39), 514 (4.13), 347 (3.92), 270 nm (4.10)). The corresponding green tetrafluoroborate <u>5</u> can be prepared in 71% yield from <u>2</u> using nitrosyl or silver tetrafluoroborate (mp 212°C; UV/VIS (CF₃COOH): λ_{max} (lg ε) = 590 (4.60), 509 (4.29), 390 (3.65), 331 (4.00), 236 nm (4.25)).

 $\frac{4}{2}$ and $\frac{5}{2}$ are thus the first reported benzoquinone dication salts (the tetrakis-dimethylamino-p-benzoquinone radical cation has been described only recently⁶). Despite their $(4n)\pi$ electron systems, $\frac{4}{2}$ and $\frac{5}{2}$ are fairly stable in the crystalline state (they decompose slowly in solution). As a solid, $\frac{5}{2}$ provides a singlet ESR spectrum centered at g = 2.0. The spin concentration at 20°C is 3.3 x 10¹⁹ spins/mol which amounts to a concentration of 5.5 10⁻⁵ radicals per molecule. At -160°C, in addition to the singlet spectrum, a weak triplet signal at g = 4 is observed which disappears at higher temperatures. In methanol solution, no triplet signal but a well-resolved multiplet spectrum centered at g = 2.0029 with more than 17 lines is observed (a = 3.88 G). Obviously, the radical species that causes the ESR signal (radical cation of 2?) is present only in very low concentration. There is thus no indication that 5 exists in a triplet state at temperatures higher than -160°C.


The cyclovoltammograms (Figure 1b) of 2 and 4 or 5 (0.001 M in acetonitrile with 0.1 M $\text{Et}_4 \text{N}^+\text{BF}_4^-$) exhibit one broad distorted wave typical of two successive oxidation steps (at approximately 0.14 and 0.22 V vs SCE) with a


potential separation of approximately 80 mV (cf.⁷). In DMF the two steps coalesce even more, so that one observes only a single wave at +0.25 V ($\Delta E \approx 60$ mV; Figure 1a). The area of this wave is twice that of the wave at -1.07 V (reduction to the radical anion). The electrochemical results are in accordance with the observation that only the dication salts $\frac{4}{2}$ and $\frac{5}{2}$ were obtained through chemical oxidation, and the radical cation at best in trace amounts.

<u>2</u> can be reduced with zinc/acetic anhydride to afford the air-sensitive electron-rich benzene derivative <u>6</u> in high yield (mp 205-206°C; cyclovoltam-mogram in CH₃CN: two-electron wave at +0.16 V vs SCE, $\Delta E \approx 60$ mV). The oxidation potential of <u>6</u> differs not very much from that of <u>2</u> which underlines the close electronic relationship between tetraaminodihydroxybenzenes and tetraaminobenzoquinones. Surprisingly, the dimethoxy derivative <u>7</u> is formed when <u>1</u> is warmed with an excess of dimethylethylenediamine in water (mp 167-169°C). The oxidation of <u>6</u> with nitrosyl tetrafluoroborate furnishes the violet-blue benzene dication salt <u>8</u> in 61% yield (mp 164-166°C; UV/VIS (aceto-nitrile): λ_{max} (lg ε) = 631 (2.93), 425 (4.13), 372 (4.35), 253 nm (4.26)).

Likewise, tetrapiperidino-p-benzoquinone (9) reacts with nitrosyl or trimethyloxonium tetrafluoroborate to afford, as green needles, the dication salt 10 in almost pure form (mp 239-241°C; λ_{max} (acetonitrile) = 543 nm). The cyclovoltammogram of 9 exhibits only a single wave at +0.22 V vs SCE in acetonitrile ($\Delta E \approx 30$ mV; Figure 1c) or at 0.33 V in DMF ($\Delta E \approx 33$ mV) similar to a two-electron wave. It is surprising that with tetrakis-dimethylamino-p-benzoquinone the electrooxidation stops at the stage of the radical cation.⁰ The reductive acylation of 9 gives rise to the colorless diacetoxytetrapiperidinobenzene 11 (mp 296-298°C) which could not be oxidized.

In order to investigate the properties of mercapto analogues of 2, the purple bisethylenedithio-p-benzoquinone 12 (mp (chlorobenzene) 314-315°C) was synthesized through the reaction of chloranil with ethanedithiol (cf. the reaction of 2,3-dichloronaphthoquinone 8). The donor effect of the ethylenedithic groups is, however, too weak to permit the chemical oxidation of 12 to

a radical cation or a dication. Alkylation gives rise to the bright orange disulfonium salt <u>13</u> (UV/ VIS (H_2SO_4): λ_{max} (lg ϵ) = 493 (3.07), 387 (4.11), 263 (4.05)).

Acknowledgements: This work has been funded by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. The ESR spectra have been measured by Dr. H. G. Fitzky, Bayer AG, Leverkusen.

References

1.	E.Wasserman,	R.S.Hutton,	V.J.Kuck,	E.A.Chandross,	J.Am.Chem.Soc.	96 (1974)
2.	S.Hünig, P.Ri	ichters. Cher	n.Ber. 91	(1958) 442.		[1965]

- 2. S.Hünig, P.Richters, Chem.Ber. 91 (1958) 442.

- S. Ruhig, F. Richters, Chem. Ber. 91 (1950) 442.
 R. Breslow, P. Maslak, J.S. Thomaides, J.Am. Chem. Soc. 106 (1984) 6453.
 R. Gompper, N. Sengüler, Tetrahedron Lett. 24 (1983) 3567.
 K. Wallenfels, W. Draber, Tetrahedron 20 (1964) 1889.
 H. Bock, P. Hänel, W. Kaim, U. Lechner-Knoblauch, Tetrahedron Lett. 26 (1985) [5115.
 W. E. Hahn, L. Wojciechowski, Rocz. Chem. 41 (1967) 1067 (Chem. Abstr. 68 (1968) 59510y).

(Received in Germany 13 November 1985)